Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF.
نویسندگان
چکیده
Microphthalmia-associated transcription factor (MITF) is a master regulator of melanocyte development and an important oncogene in melanoma. MITF heterodimeric assembly with related basic helix-loop-helix leucine zipper transcription factors is highly restricted, and its binding profile to cognate DNA sequences is distinct. Here, we determined the crystal structure of MITF in its apo conformation and in the presence of two related DNA response elements, the E-box and M-box. In addition, we investigated mouse and human Mitf mutations to dissect the functional significance of structural features. Owing to an unusual three-residue shift in the leucine zipper register, the MITF homodimer shows a marked kink in one of the two zipper helices to allow an out-of-register assembly. Removal of this insertion relieves restricted heterodimerization by MITF and permits assembly with the transcription factor MAX. Binding of MITF to the M-box motif is mediated by an unusual nonpolar interaction by Ile212, a residue that is mutated in mice and humans with Waardenburg syndrome. As several related transcription factors have low affinity for the M-box sequence, our analysis unravels how these proteins discriminate between similar target sequences. Our data provide a rational basis for targeting MITF in the treatment of important hereditary diseases and cancer.
منابع مشابه
Mitf expression is sufficient to direct differentiation of medaka blastula derived stem cells to melanocytes.
Embryonic stem (ES) cell lines have provided very useful models to analyse differentiation processes. We present here the development of a differentiation system using ES-like cell lines from medaka. These cells were transfected with the melanocyte specific isoform of the microphtalmia-related transcription factor (Mitf). Mitf is a basic helix-loop-helix-leucine zipper transcription factor whos...
متن کاملInterallelic complementation at the mouse Mitf locus.
Mutations at the mouse microphthalmia locus (Mitf) affect the development of different cell types, including melanocytes, retinal pigment epithelial cells of the eye, and osteoclasts. The MITF protein is a member of the MYC supergene family of basic-helix-loop-helix-leucine-zipper (bHLHZip) transcription factors and is known to regulate the expression of cell-specific target genes by binding DN...
متن کاملA general method to design dominant negatives to B-HLHZip proteins that abolish DNA binding.
We describe a method to design dominant-negative proteins (D-N) to the basic helix-loop-helix-leucine zipper (B-HLHZip) family of sequence-specific DNA binding transcription factors. The D-Ns specifically heterodimerize with the B-HLHZip dimerization domain of the transcription factors and abolish DNA binding in an equimolar competition. Thermal denaturation studies indicate that a heterodimer ...
متن کاملThe leucine zipper of TFE3 dictates helix-loop-helix dimerization specificity.
TFE3 is a DNA-binding protein that activates transcription through the muE3 site of the immunoglobulin heavy-chain enhancer. Its amino acid sequence reveals two putative protein dimerization motifs: a helix-loop-helix (HLH) and an adjacent leucine zipper. We show here that both of these motifs are necessary for TFE3 to homodimerize and to bind DNA in vitro. Using a dominant negative TFE3 mutant...
متن کاملMITF: master regulator of melanocyte development and melanoma oncogene.
Microphthalmia-associated transcription factor (MITF) acts as a master regulator of melanocyte development, function and survival by modulating various differentiation and cell-cycle progression genes. It has been demonstrated that MITF is an amplified oncogene in a fraction of human melanomas and that it also has an oncogenic role in human clear cell sarcoma. However, MITF also modulates the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genes & development
دوره 26 23 شماره
صفحات -
تاریخ انتشار 2012